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We investigate estimation of causal effects of multiple competing (multi-valued)
treatments in the absence of randomization. Our work is motivated by an
intention-to-treat study of the relative cardiometabolic risk of assignment to one
of six commonly prescribed antipsychotic drugs in a cohort of nearly 39 000
adults with serious mental illnesses. Doubly-robust estimators, such as tar-
geted minimum loss-based estimation (TMLE), require correct specification of
either the treatment model or outcome model to ensure consistent estimation;
however, common TMLE implementations estimate treatment probabilities
using multiple binomial regressions rather than multinomial regression. We
implement a TMLE estimator that uses multinomial treatment assignment and
ensemble machine learning to estimate average treatment effects. Our multino-
mial implementation improves coverage, but does not necessarily reduce bias,
relative to the binomial implementation in simulation experiments with vary-
ing treatment propensity overlap and event rates. Evaluating the causal effects
of the antipsychotics on 3-year diabetes risk or death, we find a safety bene-
fit of moving from a second-generation drug considered among the safest of
the second-generation drugs to an infrequently prescribed first-generation drug
known for having low cardiometabolic risk.
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1 INTRODUCTION

Antipsychotic drugs effectively control some of the most disturbing symptoms of schizophrenia, and no other
treatments have comparable effectiveness.1 These drug are also valuable for the treatment of bipolar I disorder2 and
treatment-resistant major depressive disorder (MDD).3 While more than 20 antipsychotic drugs are available in the U.S.,
the most widely used are the subset of second generation antipsychotics (SGAs). SGAs are generally as effective as first
generation antipsychotics (FGAs) and avoid some common FGA side effects, but there is evidence that some frequently
used SGAs carry a higher risk for cardiometabolic morbidity (which includes diabetes) relative to FGAs.4 Diabetes is a

Statistics in Medicine. 2024;43:1489–1508. wileyonlinelibrary.com/journal/sim © 2024 John Wiley & Sons Ltd. 1489

https://orcid.org/0000-0001-7436-0277
https://orcid.org/0000-0001-7027-4769
http://wileyonlinelibrary.com/journal/SIM


1490 POULOS et al.

serious condition, and its rising prevalence in the general population is a major target of efforts to improve the health
of the public,5,6 and it is at least twice as prevalent among people with serious mental illnesses (SMI) than their peers.7
Compared to the general population, people with SMI have a higher risk for cardiometabolic morbidity in general,8 which
accounts for a large fraction of their reduced life expectancy.9

The existing evidence on the relative safety of different antipsychotics is limited. Randomized controlled trials (RCTs)
have focused on the drugs’ effects on risk factors for diabetes and other cardiometabolic morbidity10 rather than the
occurrence of these morbidities, and mortality trials have been conducted in samples of elderly adults with dementia.11

Otherwise, most evidence comes from observational studies. Some studies compare (i) recent initiators of antipsychotic
drugs to a control group not receiving an antipsychotic drug;12,13 (ii) FGA users to SGA users, not differentiating specific
antipsychotics;14 (iii) individuals receiving a specific SGA to those receiving any other SGA;15 or (iv) individuals receiving
one vs two or more antipsychotic drugs.16 These studies have some important limitations. Given the effect heterogeneity
for cardiometabolic morbidity for specific SGAs, pooled analyses of all SGAs may mask risks for specific drugs, potentially
incorrectly implicating all SGAs. Studies that compare SGA outcomes to individuals receiving no SGA are of little help
for those with SMI because an antipsychotic is required. Moreover, these studies cannot draw conclusions on the relative
safety of antipsychotics based on one-to-one comparisons because they do not balance covariates across the drug groups.
An exception is the study of Gianfrancesco et al,12 which models diabetes risk using a single logistic regression controlling
for patient characteristics.

Our paper is motivated by an intention-to-treat study of the relative cardiometabolic risk of non-random assignment
to one of six commonly prescribed antipsychotic drugs in a cohort of adults with SMI. We compare four SGAs and one
FGA to a reference drug (a SGA) thought to have a relatively lower risk for cardiometabolic morbidity and mortality
compared to other SGAs. The clinical relevance of these comparisons is bolstered by evidence that switching to safer
drugs can improve some metabolic indices without causing significant psychiatric deterioration.17

Several estimators have been proposed for estimating causal effects in observational data settings with multiple com-
peting (multi-valued) treatments,18,19 although their applications have been limited to a small number of treatment levels
and a focus on continuous outcomes. The propensity score, the probability of receiving a treatment given the observed
covariates,20 has played a central role in causal inference. For instance, inverse probability of treatment weighted (IPTW)
estimators, which weight the outcomes of units in each treatment group by the inverse of the propensity score with the
goal of matching the covariate distribution of a target population, is a common strategy for binary treatments.21-24 Two
decades ago, Imbens25 and Imai and van Dyk26 generalized the propensity score framework from the binary treatment set-
ting to the setting of multi-valued treatments. Generalized propensity score (GPS) methods have since been proposed for
the case of a single continuous treatment,27-30 and multiple continuous31-33 or multi-valued34-36 treatments. Yang et al37

proposed subclassification or matching on the GPS to estimate pairwise average causal effects, and Li and Li38 introduce
generalized overlap weights for pairwise comparisons that focus on the target population with the most covariate over-
lap across multiple levels of treatment. Similar to other propensity score methods, these generalized approaches depend
on the correct specification of the treatment model and do not eliminate bias from unmeasured confounding. A differ-
ent approach proposed by Bennett et al39 does not require estimation of a GPS. Rather, the authors directly match on the
covariates using mixed integer programming methods to balance each treatment group to a representative sample drawn
from the target population. This approach has the advantage of directly balancing covariates without the need to specify
a statistical model.

Doubly-robust estimators require that either the treatment model or outcome model is correctly specified to ensure
consistent estimation.40-43 Targeted minimum loss-based estimation (TMLE) is a widely-used doubly-robust estimator
that permits data-adaptive estimation strategies to improve specification of models for causal inference.44-46 The TMLE,
which is doubly robust for both consistency and asymptotic linearity, reweights an initial estimator with a function of
the estimated GPS. Augmented IPTW (A-IPTW), which adds an augmentation term to the IPTW estimator, is another
doubly-robust method which aims to solve an estimating equation in candidate values of the causal parameter.47,48

TMLE’s flexibility in model specification and its focus on minimizing bias through a log-likelihood loss function offer
advantages in terms of estimator efficiency and robustness. Unlike A-IPTW, TMLE does not aim to solve an estimating
equation, but rather uses a log-likelihood loss function to minimize the bias of the causal parameter. This allows TMLE
to leverage nonparametric methods for estimating the outcome and treatment models, thereby reducing the likelihood
of model misspecification, especially in high-dimensional settings.49-51 Moreover, TMLE has been shown to outperform
A-IPTW in finite samples.52

Few researchers have used TMLE for causal inference in multi-valued treatments settings. Cattaneo53 focuses on
estimation of multi-valued treatment effects using a generalized method of moments approach that is also doubly-robust
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and semiparametrically efficient. Wang et al54 adapt TMLE to estimate a global treatment importance metric for numerous
studies that make comparisons between multiple concurrent treatments, where the availability of treatments may differ
across studies. Similarly, Liu et al55 adapts TMLE to measure effect heterogeneity in a meta-analysis of numerous studies
with multiple concurrent treatments. While the goal of Wang et al and Liu et al is to obtain a global measure of effect
or effect modification, respectively, in a meta-analysis, the focus of the present paper is to estimate pairwise average
causal effects between multiple competing treatments in a single study. Siddique et al56 focus on the TMLE of multiple
concurrent treatments, resulting in a potentially large number of possible treatment combinations which may not be
observed in the data. Our study is the first to our knowledge to evaluate TMLE in the multi-valued treatment setting in
simulations. In the simulation studies of Siddique et al, Liu et al, and Wang et al, multiple treatments are assigned using
binomial logistic models, whereas in our simulations, multi-valued treatment is assigned using a single multinomial
logistic model.

Our paper contributes to the causal inference literature along several dimensions. First, we add to the sparse literature
on inference for multi-valued treatments with a focus on implementation. We review the assumptions required to make
causal inference in the multi-valued treatment setting, define several key causal parameters, and describe approaches for
assessing the validity of the common support assumption. Second, we extend TMLE to the multi-level treatment setting
through accurate estimation of a multinomial treatment model. One of the key advantages of using a multinomial treat-
ment model in the TMLE framework is its ability to jointly model the multiple treatment categories. This joint modeling
allows for a more efficient use of the available data, as it can account for the correlations between different treatment lev-
els. This advantage becomes particularly evident when using the IPTW estimator. In TMLE, the outcome model tends to
moderate the influence of the weights, making the advantages of a well-specified treatment model less pronounced. How-
ever, in IPTW, a poorly specified treatment model can lead to unstable estimates, primarily due to errors in the weighting
mechanism.

Surprisingly, all peer-reviewed implementations of TMLE for multi-valued treatments use a series of binomial treat-
ment assignments. McCaffrey et al57 propose using a gradient boosting algorithm to estimate the probabilities for multiple
treatments, and suggest a binomial modeling approach for computational ease, noting that while the sum of the estimated
probabilities across all treatment levels may not equal one, this poses no problem for weighted estimators because only
the estimated probability of the treatment actually received for each individual is used. However, this approach will result
in a loss in efficiency because the wrong treatment model is estimated and complicates the assessment of common sup-
port because estimates for all treatment levels for each unit are required. Another computational reason for the binomial
assignment approach is that the software implementation of the super learner58-63 used to estimate the treatment model
does not support multinomial outcomes. The super learner is an ensemble method that uses cross-validated log-likelihood
to select the optimal weighted average of estimators from a pre-selected library of nonparametric classification
algorithms.

Third, we evaluate the comparative performance of the current implementations and our approach of TMLE through
numerical studies using data adaptive approaches. While theory dictates that TMLE estimators will be unbiased if only
one model is misspecified, efficiency will suffer. Simulations demonstrate that our multinomial implementation improves
coverage, but does not always minimize bias, compared to the binomial implementation.

2 DOUBLY-ROBUST ESTIMATORS FOR MULTI-VALUED TREATMENTS

2.1 Notation and setup

We observe a sample of size n in which each subject i has been assigned to one of J treatment levels. In our
application, we focus on monotherapy users of one of six drugs; that is, those who use a single drug for treat-
ment. The observed treatment level is denoted ai ∈ , with a the length-n vector of treatment assignments, and
 = {j = 1, 2, … , J} the collection of possible treatment levels. The sample size for each treatment level j is denoted
nj, with

∑J
j=1nj = n. We also observe a p × 1 vector of covariates measured prior to treatment initiation, xi, with

x ∈ X.
The observed outcome is yi =

∑J
j=11(ai = j)yi(j), with1(⋅) denoting the indicator function. For each subject, we observe

oi = (yi, ai, xi) arising from some probability distribution P. Under the potential outcomes framework, subject i’s potential
outcome under treatment level j, yi(j), depends only on the treatment the subject receives and not by treatments received
by other subjects.
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Assumption 1. Stable unit treatment value assumption (SUTVA). (i) The potential outcome for any subject
does not vary with treatments assigned to other subjects; and (ii), a single version of each treatment level
exists: yi(a1, a2, … , an) = yi(ai), ∀ ai ∈ .

The no interference assumption (i) is plausible for the treatment examined in this article—a subject’s diabetes status
cannot be caused by another subject’s antipsychotic treatment assignment. The assumption of a single version of each
treatment level (ii), which ensures that each subject has the same number of potential outcomes, may be violated if
treatment levels are loosely defined. In our example, we include both oral and injectable versions of the same drug. While
the biological effects of the oral and injectable versions may be similar, variations in adherence could lead to meaningful
variations in a treatment level and potentially introduce bias in the estimated treatment effects in an intent-to-treat study.

We denote the conditional probability subject i is assigned treatment level j, Pr(ai = j | xi), by pj(xi) such that
∑J

j=1 pj(xi) = 1. For causal inference in the multi-valued treatment setting, Imbens25 refers to pj(xi) as the GPS. We let
𝜇j = E{yi(j)} denote the marginal mean outcome and ej(xi, 𝜇j) = E(yi(j) | xi) denote the conditional mean outcome. We
make the following two assumptions, which are explicitly made in the work of Imbens.

Assumption 2. Weak unconfoundedness. The distribution of the potential outcomes is independent of
treatment assignment, conditional on the observed covariates: yi(j) ⟂⟂ 1(ai = j) | xi, ∀ xi ∈ X and ai ∈ .

The assumption is weak because the conditional independence is assumed at each level of treatment rather than
joint independence of all the potential outcomes. This assumption is not testable and typically justified on substantive
grounds. Bolstering its validity requires conditioning on many covariates, making the dimensionality of x large. In our
setting, six-month medical history information prior to the index antipsychotic fill is available, including all drugs filled
by the subject and billable medical services utilized. Demographic information that includes place of residence is known.
All subjects have the same health insurer, although how the benefits are managed may differ across states. Nonetheless,
treatment preferences, results of diagnostic tests, and some information known only to physicians, such as the subjects’
body mass index, are unknown.

Assumption 3. Positivity. There is a positive probability that someone with covariates xi could be assigned
to each j: Pr(ai = j | xi) > 0, ∀ xi ∈ X and ai ∈ .

The positivity assumption is required to avoid extrapolating treatment effects for covariate patterns where there are
no observations for some treatments. Structural violations occur if subjects with specific covariate patterns cannot receive
one of the treatment levels, due to, in our case, absolute contraindications. However, practical violations of the positiv-
ity assumption could occur due to finite sample sizes. While the positivity assumption is testable in high dimensions,
detecting violations is challenging.64

The number of treatments levels complicates inferences in the observational setting. First, meeting the unconfound-
edness assumption requires the availability of a large number of covariates to differentiate among the treatment choices.
Second, several target populations exist and our clinical problem requires a population of individuals eligible for any
of the six drugs. Finding individuals from all treatment groups in subsets determined by the covariate space becomes
increasingly difficult as the number of treatment choices increases. Regression, some machine-learning algorithms,
propensity-score based approaches, and matching methods often extrapolate over areas of the covariate space with no
common support (referred to as areas of “non-overlap”). To circumvent non-overlap, a common strategy is to winsorize
extreme probabilities to a threshold.65,66 Third, the probability of assignment varies considerably across treatment levels
which will impact the precision of estimates, and with more treatment levels, the observed number of individuals in any
treatment arm may be small.

2.2 Positivity and common support

We use the effective sample size (ESS) associated with each treatment level as a diagnostic for assessing common support.
Comparison of this metric among different estimators provides a rough measure of the amount of information in the
sample used to estimate the marginal mean outcome.

Definition 1. Effective sample size (ESS). The ESS is a measure of the weighted sample size for treatment
level j defined as
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ESSj =
(∑n

i 1(ai = j)wj(xi)
)2

∑n
i 1(ai = j)wj(xi)2

, with
∑

j
p̂j(xi) = 1, and wj(xi) = 1∕p̂j(xi).

McCaffrey et al57 suggests the ratio ESSj∕nj as a measure of the loss of precision due to weighting, with relatively small
values of the ratio indicating weak overlap among the treatment groups.

2.3 Causal parameter

Our inferential goal is the estimation of the difference in the average outcome if everyone was treated with any other
treatment jAlt and the average outcome if everyone was treated with a reference treatment jRef.

Definition 2. Average treatment effect (ATE). The average effect caused by any other treatment jAlt over the
reference treatment jRef in the sample.

ATEjRef, jAlt = E(yi(jAlt) − yi(jRef)) = 𝜇jAlt − 𝜇jRef ; jAlt ≠ jRef.

The ATE represents the causal effect of moving from one treatment to another for all units in the sample. Identification
of the ATE in the context of multi-valued treatments is provided in Cattaneo.53 In the application, we want to understand
how patients treated with any antipsychotic other than the reference drug would fare in terms of diabetes or mortality
risk if they were instead treated with the reference, which is purported to have a more favorable cardiometabolic risk
profile.

2.4 Targeted minimum loss-based estimation (TMLE)

TMLE updates an initial estimate of a parameter with a correction determined by optimizing the bias-variance trade-off
using a loss function for the causal parameter. The estimator is asymptotically linear with the influence curve equal to
the canonical gradient. We focus on estimation of the marginal mean outcome for each treatment level j, 𝜇j, and collect
estimators into a vector. This strategy is useful for making joint inferences between multiple treatment levels, as demon-
strated by Cattaneo.53 Let ê0(⋅) denote the initial estimate of E(yi(j) | xi), also called the G-computation estimate,67 and
ê1(⋅) denote the adjusted estimate. The TMLE estimator for 𝜇j is

𝜇j, TMLE =
1
n

n∑

i=1
ê1(xi, 𝜇j) =

1
n

n∑

i=1
h−1

(

h
(

ê0(xi, 𝜇j)
)
+

𝜖j1(ai = j)
p̂j(xi)

)

, (1)

where h is a link function and
(
𝜖j1(ai = j)

)
∕p̂j(xi) is a correction that targets the unknown parameter 𝜇j. In comparison,

the IPTW estimator for 𝜇j instead reweights the observed outcomes with the inverse of the GPS

𝜇j, IPTW = 1
n

n∑

i=1

1(ai = j)
p̂j(xi)

yi.

The two-step TMLE estimation procedure is as follows. First, super learner estimates for ej(xi, 𝜇j) and pj(xi) are substituted
into Equation (1). Second, the term 𝜖j is obtained by estimating a parametric regression model

h(E(yi = 1 | ai, xi, 𝝐)) = h
(

ê0(xi, 𝜇ai )
)
+

J∑

j=1
𝜖j
1(ai = j)

p̂j(xi)
, (2)

and fixing the coefficient of h
(

ê0(xi, 𝜇ai)
)

at one. The correction is determined using a log-likelihood loss function to
minimize the bias of 𝜇j.

When Assumptions 1–3 are met, van der Laan and Rubin44 demonstrate that the efficient influence curve for
ATEjRef, jAlt is
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ICjRef, jAlt (oi) =
(
1(ai = jAlt)

pjAlt(xi)
−
1(ai = jRef)

pjRef(xi)

)
(

yi − e(xi, 𝜇ai )
)
+ ejAlt(xi, 𝜇jAlt) − ejRef(xi, 𝜇jRef) −̂ATEjRef, jAlt .

The influence curve tells us how much an estimate will change if the input changes, and is used to estimate the variance
and standard error 𝜎 of the ATE

V
(
ATEjRef, jAlt

)
= 1

n

n∑

i=1

̂IC
2
jRef, jAlt(oi) and 𝜎jRef, jAlt =

√
V
(
ATEjRef, jAlt

)
∕n. (3)

The standard error is used to construct a 95% Wald-type confidence interval, ATEjRef, jAlt ± 1.96𝜎jRef, jAlt .

2.4.1 Binomial treatment model

In the software implementation of TMLE, each pj(xi) is modeled separately as a Bernoulli random variable, estimating
the probability of receiving treatment level j relative to all other treatment levels. Thus, Equation (2) is replaced by

h(E(yi = 1 | ai, xi, 𝝐)) = h
(

ê0(xi, 𝜇ai )
)
+ 𝜖j

1(ai = j)
p̂j(xi)

+ 𝜖−j
1(ai = −j)

p̂−j(xi)
,

where the subscript −j refers to all treatments except j. In this strategy, there is no guarantee that
∑

j pj(xi) = 1 and the
estimate of 𝜖j may differ from those obtained using Equation (2). In both our simulation results (Section 3.3) and the
application findings (Section 4.2), we observed that the binomial estimates of pj(xi) generally assume more extreme values
and exhibit greater variability compared to the multinomial estimates, resulting in narrower confidence intervals.

Comparisons of the use of repeated binomial models with a multinomial model for nominal response options have
been previously studied. Agresti68 indicated that the standard errors of maximum likelihood estimates of regression
parameters when fitting separate binary regression models are larger relative to those obtained when fitting a single
multinomial model. In earlier work, Becg and Gray69 demonstrated that when using the same reference group via a logit
link, the multinomial and repeated binomial models are parametrically similar, and the maximum likelihood estima-
tors of regression coefficients from both models are asymptotically normal and unbiased but have different covariance
matrices. Using simulation studies, the authors demonstrated that while the relative asymptotic efficiencies of the regres-
sion parameters obtained via the repeated binomial modeling approach were sufficient, the efficiencies were lower for
predicted probabilities and declined as (i) the number of covariates, (ii) the number of treatment groups, and (iii) the
differences in magnitude of the regression coefficients across response options increase. Thus, the use of repeated bino-
mial models for the treatment assignment mechanism rather than a multinomial model in the TMLE when the outcome
model is correctly specified should result in differences in coverage or confidence interval widths for marginal outcome
estimates, but bias should not differ.

While the aforementioned work has shown that repeated binomial models and multinomial models yield asymptoti-
cally normal and unbiased maximum likelihood estimators of regression coefficients with different covariance matrices,
it is important to note that coverage is not solely determined by these factors. Coverage also depends on the bias of the esti-
mator, the bias in the estimated standard errors, and the degree to which the distribution of the estimator approximates
normality.

2.4.2 Implementation details

We rely on the sl3 package in R for constructing the super learner (hereafter, “SL”) for the treatment and outcome
models, since this package supports multinomial classification algorithms and a multinomial loss function for the SL.70

When estimating a multinomial treatment model, the SL combines the predictions from multiple classification algorithms
by multinomial linear regression. For binomial treatment or outcome models, the SL combines algorithmic predictions
by binomial logistic regression. The SL weights are optimized by minimizing a negative log-likelihood loss function that
is cross-validated with 5 folds, each consisting of a validation set and a training set. The routine for optimizing the SL
weights, given the loss function and combination function, is nonlinear optimization using Lagrange multipliers.71
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We use a variety of flexible and nonparametric classification algorithms for the treatment and outcome model
ensembles. These algorithms include gradient boosting;72 random forests with varying forest sizes;73 𝓁1-penalized lasso
regression; and elastic net regressions, weighting the 𝓁1 penalty at 𝛼 ∈ {0.25, 0.50, 0.75} and the 𝓁2 penalty at 1 − 𝛼.74 The
lasso and elastic net regressions internally perform 5-fold cross-validation to select the optimal regularization strength.
Web Table 1 provides additional details on the candidate algorithms used in the treatment and outcome model ensembles.

3 NUMERICAL STUDIES

We conduct numerical studies to assess the operating characteristics of various estimators in the finite sample-size set-
ting, following the simulation design of Yang et al, who examined multi-valued treatments but focused on continuous
outcomes. Li and Li also used this design to assess the comparative performance of matching, weighting, and subclassifi-
cation estimators using the GPS. Specifically, we generate potential outcomes under each of J = 6 treatments assigned to
n = 10 000 individuals and estimate ATEs for each of the 15 pairwise comparisons, denoted 𝝀jRef, jAlt . We iterate this pro-
cess H = 1000 times, and for each simulation run h, calculate mean absolute bias, coverage probability of 95% confidence
intervals, and confidence interval widths (defined in Web Appendix A). We use the influence curve for each estimator to
estimate standard errors.

Our focus on the ATE for the sample rather than for a population has specific implications for our simulation design.
While this choice complicates inference relative to the simulation, we opted for a standard simulation approach that
generates a new sample with each run. This method allows us to assess the robustness of our estimator under varying
conditions, providing a more comprehensive evaluation of its performance. Although one could argue for an alternative
approach—treating the sample as fixed and repeatedly sampling treatment assignments using propensity scores as sample
probabilities—we believe our chosen method offers valuable insights into how the estimator behaves across different
samples.

We evaluate two different TMLE implementations for the treatment model, both estimated with SL: TMLE using
multinomial treatment probabilities (hereafter, TMLE-multinomial) and TMLE using binomial treatment probabilities
(TMLE-binomial), both estimated with SL. The outcome model uses binomial outcome probabilities estimated with
SL. We also include three non-doubly-robust estimators for comparison, each also estimated with SL: IPTW using
multinomial treatment probabilities (IPTW-multinomial) or binomial treatment probabilities (IPTW-binomial), and
G-computation. TMLE-multinomial is the approach we use in the application because it is doubly-robust and reflects
the multinomial stochastic structure of the treatment probabilities. TMLE-binomial closely aligns with the software
implementation of TMLE, which incorrectly assumes binomial treatment probabilities. The IPTW and G-computation
estimators are included to demonstrate the doubly-robust property of TMLE.

3.1 Multinomial treatment assignment

We assign treatments according to six covariates: x1i, x2i, and x3i are generated from a multivariate normal distribu-
tion with means zero, variances of (2,1,1) and covariances of (1, −1, −0.5). The latter three covariates are generated
as follows: x4i ∼ Uniform [−3, 3], x5i ∼ 𝜒

2
1 , and x6i ∼ Bern(0.5), with the covariate vector x⊤

i = (1, x1i, x2i, … , x6i). The
treatment model follows the multinomial logistic model, (1(ai = 1), … ,1(ai = J)) | xi ∼ Multinom(p1(xi), … , pJ(xi)),
with pj(xi) =

exp(x⊤

i 𝛽j)
∑J

k exp(x⊤

i 𝛽k)
, where 𝛽

⊤

1 = (0, 0, 0, 0, 0, 0, 0), 𝛽

⊤

2 = 𝜅2 × (0, 1, 1, 2, 1, 1, 1), 𝛽

⊤

3 = 𝜅3 × (0, 1, 1, 1, 1, 1,−5), 𝛽

⊤

4 =

𝜅4 × (0, 1, 1, 1, 1, 1, 5), 𝛽⊤5 = 𝜅5 × (0, 1, 1, 1,−2, 1, 1), and 𝛽

⊤

6 = 𝜅6 × (0, 1, 1, 1,−2,−1, 1). Different values of 𝜅 are selected
to vary the amount of overlap, or similarity in the distributions of the propensity scores across treatment levels,
and thus produce three treatment model settings. Following Li and Li, we use (𝜅2, … , 𝜅6) = (0.1, 0.15, 0.2, 0.25, 0.3)
to simulate experiments with “adequate overlap”; that is, similarity in the distributions of propensity scores across
treatment groups. Treatment probabilities range from 8.7% to 25.6% in this setting (Web Figure 1A). In a different
setting, we set (𝜅2, … , 𝜅6) = (0.4, 0.6, 0.8, 1.0, 1.2), which are the same values used in Yang et al, to simulate an “inad-
equate overlap” scenario with strong propensity tails; simulated treatment probabilities range from 3.9% to 33.9%
in this setting. We examine a third setting that is reflective of a RCT. In the RCT setting, (𝜅2, … , 𝜅6) = (0, 0, 0, 0, 0)
so that the covariates have no influence in assignment treatment; that is, there’s a 1∕6 probability of treatment,
on average.
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3.2 Outcome generation

In each simulation run, we generate potential outcomes using the Bernoulli model, yi(j) ∼ Bern
(

exp(x⊤

i 𝛾j+1(ai=j))
1+exp(x⊤

i 𝛾j+1(ai=j))
)

.
We simulate three different settings to vary the event rate, or the probability an outcome is observed under each
treatment level. In a “low event rate” setting, we generate outcome event rates using 𝛾

⊤

1 = (−4, 1,−2,−1, 1, 1, 1), 𝛾⊤2 =
(−6, 1,−2,−1, 1, 1, 1), 𝛾⊤3 = (−2, 1,−1,−1,−1,−1,−4), 𝛾⊤4 = (1, 2, 1, 2,−1,−1,−3), 𝛾⊤5 = (−2, 2,−1, 1,−2,−1,−3), and 𝛾

⊤

6 =
(−3, 3,−1, 1,−2,−1,−2). This setting generates event rates that range from 3.5% to 55.4% (Web Figure 1B). In a “mod-
erate event rate” setting, we use the same 𝛾j values in Yang et al: 𝛾⊤1 = (−1.5, 1, 1, 1, 1, 1, 1), 𝛾⊤2 = (−3, 2, 3, 1, 2, 2, 2), 𝛾⊤3 =
(3, 3, 1, 2,−1,−1,−4), 𝛾

⊤

4 = (2.5, 4, 1, 2,−1,−1,−3), 𝛾

⊤

5 = (2, 5, 1, 2,−1,−1,−2), and 𝛾

⊤

6 = (1.5, 6, 1, 2,−1,−1,−1). Out-
comes generated using these parameters range from 21.1% to 99.6%. Lastly, we specify 𝛾

⊤

1 , … , 𝛾

⊤

6 = (0, 0, 0, 0, 0, 0, 0) to
study a setting where there is no treatment effect. In this setting, the outcome model does not use covariate information
and the event rates are simulated at 73.1%, on average.

3.3 Results

Misspecification of only the treatment model is expected to impact efficiency rather than consistency. Therefore, it is not
unexpected that the performance of TMLE-multinomial in terms of bias is mixed. Our simulations reveal that, in scenarios
with adequate overlap and low or moderate event rates, the TMLE-multinomial estimator exhibits less average bias than
its binomial counterpart (Figure 1). Conversely, under the condition of no treatment effect with adequate overlap, as
well as across all scenarios of inadequate overlap, the TMLE-binomial estimator shows lower average bias, indicating
more accurate estimation in these specific settings. In the RCT settings, average bias is comparable across the estimators.
Interestingly, g-computation yields limited bias even without weighting, having lower bias than the IPTW estimators in
most settings and the TMLE estimators in five of the nine settings.

Figure 2, which plots the average coverage probability for the ATE over all 15 pairwise comparisons, shows that
TMLE-multinomial achieves superior coverage compared to TMLE-binomial. The exception involves the RCT setting
where there is no treatment effect (the ninth simulation setting) where both TMLE implementations achieve the nomi-
nal coverage of 95% represented by the dotted horizontal line. In this particular setting, IPTW-multinomial overcovers,
and IPTW-binomial and G-computation undercover. When there is adequate overlap and no treatment effect (the third
simulation setting), the coverage probability for both TMLE-multinomial and IPTW-multinomial exceeds 75%, whereas
their binomial counterparts do not achieve the expected coverage probability. All five estimators struggle in the inad-
equate overlap settings, which feature treatment probabilities that are close to zero. Our preferred implementation,
TMLE-multinomial estimated using SL, has an average coverage rate between 46% and 96%.

Web Figure 2B provides coverage results for TMLE using multinomial treatment probabilities estimated using a
multinomial generalized linear model (GLM). This parametric implementation is a useful benchmark in the simula-
tions because it uses the correct parametric treatment model, except in the RCT setting, where covariates have no role
in the treatment model. TMLE-multinomial estimated using GLM has an average coverage rate between 60% and 96%.
As expected, the GLM estimator performs well when it matches the data-generating model. However, this performance
should not overshadow the advantages in choosing more flexible methods like SL-based TMLE and IPTW. These methods
offer insurance against model misspecification at the cost of potentially being less efficient when the model is correctly
specified.

Web Figure 3, which plots the average confidence interval widths over all comparisons, shows that in the adequate
and inadequate overlap settings, TMLE-multinomial has appropriately wide confidence intervals, reflecting the variabil-
ity of the treatment model estimator, while TMLE-binomial underestimates the true variability, yielding intervals that
are too narrow. The difference between binomial and multinomial implementations is not as large when the TMLE is
estimated using GLMs, as shown in Web Figure 2C. In addition to having narrower confidence intervals, the average
relative precision of the binomial approach exceeds the multinomial implementation in the adequate and inadequate
overlap settings, and is comparable in the RCT settings (Web Figure 4). Relative precision is calculated as the variance of
TMLE-multinomial estimated using GLM—which correctly models the multinomial treatment assignment—divided by
the variance of each comparison estimator.

The estimated propensity scores play an important role in the influence curve, and consequently, for the confidence
intervals for the estimated ATE. Web Figure 5A, which plots the absolute difference between the estimated and true
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F I G U R E 1 Average bias for the ATE over all 15 pairwise comparisons and 1000 simulated datasets. Estimator: , TMLE-multi. (SL);
TMLE-bin. (SL); IPTW-multi. (SL); IPTW-bin. (SL); G-comp. (SL).

treatment probabilities, provides insight into how well the methods estimate the treatment probabilities. The multinomial
treatment model estimated via SL produces no detectable bias in the estimated treatment probabilities across treatment
model settings. In contrast, the binomial treatment model estimated via SL exhibits more bias and greater variability in
terms of the estimated treatment probabilities, and slightly underestimates the true treatment probabilities in each of the
three treatment settings (Web Figures 1A and 5B).

While the binomial approach estimated via SL shows more bias and greater variance in the estimated treatment
probabilities, it also generally exhibits higher ratios of ESSj∕nj in both adequate and inadequate overlap settings
(Web Figure 5C). In the RCT setting, both treatment model implementations yield ESS ratios of one, indicating perfect
overlap among the treatment groups. It is important to note that these ratios are not influenced by the average treatment
probabilities but rather depend on the variance of the weights. Therefore, the observed differences in ESSj∕nj ratios are
not arbitrary but are a reflection of the variance in the weights.

3.3.1 J = 3 treatments

Web Appendix C details the data-generating process (DGP) and simulation results for the case of J = 3 treatments,
which is the focus of the simulation studies of Yang et al. Similar to the case of J = 6, the TMLE-multinomial estima-
tor displays average biases that are comparable with those observed for the TMLE-binomial estimator (Web Figure 6A).
The TMLE-multinomial estimator shows better coverage averaged across the three pairwise comparisons compared to
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F I G U R E 2 Average coverage probability for the ATE over all 15 pairwise comparisons and 1000 simulated datasets. Estimator:
TMLE-multi. (SL); TMLE-bin. (SL); IPTW-multi. (SL); IPTW-bin. (SL); G-comp. (SL).

TMLE-binomial (Web Figure 6B), except for the RCT setting with no treatment effect, where both estimators slightly
overcover.

3.3.2 High-dimensional covariate space

Our simulations incorporated a modest number of covariates (six) to assess estimator performance. To explore the impact
of high-dimensional settings, we expanded our simulations to include 40 or 100 covariates. Detailed descriptions of the
DGP for these scenarios, along with their respective simulation outcomes, can be found in Web Appendix D.

Our findings indicate an improvement in the performance of the TMLE-multinomial estimator, particularly in terms
of bias and variance reduction. With an increase in the covariate count to 40, our estimator demonstrated parity in average
bias with the TMLE-binomial estimator across all simulation scenarios (Web Figure 7A). Notably, the TMLE-multinomial
estimator’s advantage in average coverage was not apparent with 40 covariates (Web Figure 7B). While the confidence
interval widths for all estimators narrowed as the number of covariates increased, the TMLE-multinomial estimator’s
confidence interval widths were equal to or more narrow than those observed in the binomial implementation (Web
Figure 7C). These patterns held when the number of covariates were further increased to 100 (Web Figure 8).

3.3.3 Misspecified models

To provide a comprehensive evaluation of the estimators under varying conditions of model specification, we include three
additional scenarios that involve the omission of a single covariate, x6i, from the estimation process. The scenarios are as
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follows: (i) omitting x6i from the outcome model, resulting in its misspecification with the treatment model being correctly
specified; (ii) omitting x6i when estimating the treatment model, leading to its misspecification while the outcome model
remains correctly specified; and (iii), omitting x6i from both the outcome and treatment models, thereby introducing
misspecification into both models.

In scenarios where the outcome or treatment model are misspecified (Web Figures 9 and 10), TMLE-multinomial
yields lower or the same average bias compared to its binomial counterpart in all simulation settings, except when there is
no treatment effect and adequate or inadequate overlap (the third and sixth settings). TMLE-multinomial also maintained
its advantage in average coverage probability compared to its binomial counterpart in all settings except the RCT setting
with no treatment effect (the ninth setting), where both estimators achieve nominal coverage. When both the outcome
and treatment models are misspecified (Web Figure 11), all estimators face an inevitable increase in average bias, and
TMLE-multinomial maintains its advantage in average coverage probability compared to its binomial counterpart. This
highlights its comparative robustness in the presence of double misspecification.

4 SAFETY EFFECTS OF ANTIPSYCHOTIC DRUG TREATMENTS

We utilize patient-level data collected by the Centers for Medicare & Medicaid Services (CMS) from California, Geor-
gia, Iowa, Mississippi, Oklahoma, South Dakota, and West Virginia.75 These states are selected for their racial diversity
and lower rates of managed care penetration. Our cohort includes Medicare and dual Medicaid–Medicare beneficiaries
aged 18-64 years who resided in one of the seven states; that is, all patients in the cohort have the same public health
insurer. We include patients who were diagnosed with schizophrenia, bipolar I disorder, or severe MDD, initiated one of
six antipsychotic drugs between 2008 and 2010, and who were relatively new monotherapy users. The latter requirement
restricts the cohort to patients who have not used any antipsychotic drugs within the 6 months prior to treatment assign-
ment. Restricting the initial cohort of size n = 64 120 to patients who complete the 3-year follow-up or died before the
3-year follow-up yields a final cohort of size n = 38 762. As in the numerical studies, inferences are made conditional on
the study population; thus, we do not assume that our study population is a sample from a larger population.

The study design is intention-to-treat: patients are non-randomly assigned to the first drug filled regardless of ini-
tial dose or duration, except that they must remain on the assigned drug for the first 3 months for those who are
alive during this period. Each of the six antipsychotic drug treatments are available to each patient. We focus on four
commonly-used SGAs, denoted drugs “B,” “C,” “D,” and “E,” a reference SGA thought to have lower cardiometabolic
risk relative to the other SGAs, and a FGA known for having low cardiometabolic risk (denoted drug “A”). Table 1 sum-
marizes the observed three-year safety outcomes by antipsychotic drug. There is a wide range of treatment assignment
rates, with drug A initiated in only 6% of the cohort and drug C initiated in 26.5%. The reference drug was initiated in
less than 1 in 5 patients. Across all treatment arms, incident diabetes is 9.3% and all-cause death 5%. While the refer-
ence drug is associated with the lowest risk of mortality (3.4%), drug B is associated with the lowest observed risk of
diabetes (6.7%).

The CMS data include person-level demographic, diagnostic, and pharmacy, behavioral health, physical health, lab-
oratory tests, and other service use information measured six months prior to drug initiation. Tables A1 and A2 in

T A B L E 1 Three-year safety outcomes.

Antipsychotic Number of patients Diabetes or death Diabetes All-cause death

Reference 6686 (17.2) 891 (13.3) 679 (10.2) 225 (3.4)

A 2328 (6.0) 309 (13.3) 217 (9.3) 103 (4.4)

B 6301 (16.2) 714 (11.3) 421 (6.7) 313 (5.0)

C 10 309 (26.5) 1602 (15.5) 989 (9.6) 662 (6.4)

D 9897 (25.5) 1360 (13.7) 941 (9.5) 470 (4.8)

E 3241 (8.3) 508 (15.7) 357 (11.0) 166 (5.1)

All 38 762 (100) 5384 (13.9) 3604 (9.3) 1939 (5.0)

Note: Number (percent) having outcome.
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the Appendix summarize the baseline covariates included in the outcome and treatment models by treatment drug.
Selection into treatment is apparent with 42.8% of reference drug initiators having schizophrenia compared to 87% of
drug A initiators, and 11.6% of drug A initiators having a psychiatric comorbidity compared to 21.9% of drug C initiators.

4.1 Censoring

Our study has an all-cause censoring rate of about 27%, as shown in the second column of Web Table 2, which is
non-negligible. While the mean days to the end of follow-up may not vary substantially across treatment levels for the
initial cohort of size n = 64 120, this does not negate the potential for bias due to censoring. The types of censoring events
include the conclusion of the study period (19.3%), loss of insurance coverage (6.3%), and turning 65 years (1.8%). To
assess patient retention across treatment groups, Kaplan-Meier curves were plotted for the initial cohort over 36 months
in Web Appendix E. The reference drug showed the highest retention rates, followed closely by drug A. Drugs B, C, D,
and E displayed similar patterns of retention decline, with drug E showing a noticeable drop towards the end of the study
period.

To further investigate the impact of treatment on survival time, we examined the restricted mean survival time (RMST)
differences between the reference drug and each comparator drug (Web Table 3). The RMST estimates, both with and
without covariates, revealed varying effects across different antipsychotics. For example, drug E had a positive RMST
difference in both models, suggesting better survival time compared to the reference drug. Conversely, drug B had a
negative RMST difference when covariates were included, indicating worse survival time. We also fit Cox proportional
hazards models to assess the impact of treatment assignment on the hazard of being censored (Web Table 4). Both models
with and without covariates yielded statistically significant results for the Wald test, indicating that the antipsychotics
collectively have a significant influence on the hazard of being censored. The test for the assumption of proportional
hazards indicated that both models violated this assumption, suggesting that the hazard ratios are not constant over time
and that censoring could introduce bias into our estimates.

4.2 Causal estimates

We compare the ATE estimates using our preferred estimator, TMLE-multinomial, with the binomial treatment model
version (TMLE-binomial), and non-doubly-robust estimators (IPTW and G-computation). Similar to the numerical stud-
ies, we estimate standard errors for the ATE using the influence curve in all estimators. The outcome and treatment
models are both estimated by SL and each model relies on the same set of baseline covariates: binary indicators for
state, race and ethnicity, and health status (Table A1), and count variables of health service utilization such as ER visits
(Table A2) that are centered and scaled when fitting the models. In the SL ensembles for the binomial outcome model
and multinomial treatment model (Web Table 1), the gradient boosting classifier is favored, while random forests, elastic
net regression, and lasso regression also receive positive weights.

Compared to the binomial implementation, TMLE-multinomial does better in terms of overlap, ensuring the treat-
ment probabilities sum to one. Table 2 summarizes the estimated treatment probabilities for the multinomial and
binomial implementations estimated with SL, along with the ESS and the ratio ESSj∕nj for each drug. The predicted prob-
abilities of TMLE-binomial typically assume more extreme values and are more variable compared to TMLE-multinomial.
The estimated values of the ratio are all above 0.8, except for the TMLE-binomial estimated ratio with respect to drug A,
and the values of the TMLE-multinomial estimated ratio are equal or greater to those of TMLE-binomial, except for the
drug C comparison. Values of the ratio ESSj∕nj that are close to one indicate a similarity in estimated propensity scores
and adequate overlap among drug groups.

The high ratios of ESS to the sample size suggests there is overlap prior to weighting, but does not guarantee that the
covariates are balanced. Figure 3 plots the balance of the covariates after weighting, measured in terms of the maximum
absolute pairwise bias at each covariate, standardized by the pooled standard error of the covariate.19,76 The plot shows
that balance was improved on all 32 covariates after adjustment, bringing all but five below the threshold of 0.2 for absolute
mean differences, as suggested by McCaffrey et al.57 It is worth noting that Austin77 recommends a smaller cutoff of 0.1
for assessing balance on covariates. While both binomial and multinomial approaches improved balance, the binomial
approach provided better balance for most covariates.
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T A B L E 2 Summary statistics and ESS of estimated multinomial or binomial treatment probabilities using SL.

TMLE-multinomial TMLE-binomial

Antipsychotic Min. Mean Max. SD ESSj
ESSj

nj
Min. Mean Max. SD ESSj

ESSj

nj

Reference 0.023 0.172 0.545 0.076 5931 0.887 0.013 0.169 0.607 0.078 5863 0.877

A 0.004 0.061 0.480 0.053 1906 0.818 0.003 0.058 0.496 0.054 1359 0.584

B 0.019 0.163 0.466 0.076 5698 0.904 0.003 0.160 0.417 0.075 5331 0.846

C 0.044 0.265 0.845 0.122 8734 0.847 0.033 0.263 0.845 0.133 8813 0.855

D 0.026 0.254 0.615 0.087 9208 0.930 0.029 0.252 0.631 0.091 9186 0.928

E 0.022 0.084 0.419 0.034 2959 0.913 0.021 0.080 0.340 0.033 2943 0.908

F I G U R E 3 Covariate balance in terms of the maximum absolute standardized mean difference across treatment pairs. The dotted
vertical line corresponds to the balance threshold of 0.2. Treatment model: Unadjusted; Multinomial (SL); Binomial (SL).

Figure 4 presents the estimated ATE for each treatment drug relative to the reference drug on the combined outcome
of diabetes diagnosis or death within 36 months, or each outcome separately. The TMLE-multinomial estimate indicates
moving patients from the reference to drug A yields a 1.0 [0.2, 1.8] percentage point reduction in diabetes incidence or
death (Figure 4A). Relative to the unadjusted risk of diabetes or death among those treated with the reference (13.3%),
the point estimate of this ATE represents a 7.5 percentage point reduction. Moving patients from the reference to Drugs
C or E yields a 1.4 [0.7, 2.2] or 1.9 [1.0, 2.8] percentage point increase in the risk of diabetes or death, respectively. For the
remaining two pairwise comparisons, the confidence intervals cover zero. The ATEs estimated using TMLE-binomial are
similar in magnitude compared to those from TMLE-multinomial, and the interpretation of these results do not depend
on the treatment model distribution used for the TMLE. However, the interpretation of the results do vary in certain
comparisons if a non-doubly-robust estimator is used rather than TMLE.
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F I G U R E 4 ATE estimates for each pairwise comparison (relative to reference drug). Horizontal ranges are 95% confidence intervals
calculated using standard errors estimated from the influence function. (A) Diabetes diagnosis or death within 36 months. (B) Diabetes
diagnosis within 36 months. (C) Death within 36 months.

The finding that drug A is favorable to the reference in terms of death or diabetes can be explained by a reduction in
diabetes risk rather than mortality: moving patients from the reference to drug A confers a 1.9 [1.2, 2.6] percentage point
reduction in diabetes risk (Figure 4B). Relative to the unadjusted rate of diabetes among those treated with reference
(10.2%), this point estimate represents a 18.5 percentage point reduction. There is an equivalent size reduction in diabetes
risk favoring drug B over the reference, 1.9 [1.2, 2.6], and a smaller treatment effect favoring drug D over the reference,
0.9 [0.2, 1.5].

The reference drug is the safest in terms of mortality risk: moving patients from the reference to the treatment drugs
would increase the risk of death, with percentage point increases ranging from 1.1 [0.7, 1.6] to 2.2 [1.8, 2.7] corresponding
to drugs A and C, respectively (Figure 4C). Relative to the unadjusted rate of mortality in the reference group (3.4%), these
point estimates represent a 32.4 to 64.7 percentage point reduction in mortality.

5 DISCUSSION

Our research focused on estimating the pairwise ATEs of antipsychotic drugs using TMLE, a doubly-robust estimator,
implemented with a multinomial treatment model. The study offers valuable insights into the comparative effectiveness
of these treatments, particularly for individuals with SMI. We first discuss the comparative performance of our estimator
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in numerical studies. We then examine the clinical implications of our findings in the empirical application, discuss
limitations of the study, and suggest directions for future research.

5.1 Estimator performance in numerical studies

Simulation studies demonstrate when estimating pairwise ATEs with multi-valued treatments, our TMLE implementa-
tion using a multinomial treatment model yields better coverage than the binomial implementation. This finding is in
line with the theoretical properties of doubly-robust estimators, such as TMLE, and is not just a finite sample size finding.
These results underscore the importance of using a correct probability distribution for the treatment model. The average
coverage probabilities of 95% confidence intervals for the TMLE-binomial estimator are generally lower compared to the
TMLE-multinomial estimator, except in the RCT setting with no treatment effect. However, it is important to note that
IPTW and G-estimation also exhibit lower coverage in multiple scenarios. We recognize that coverage is just one aspect
of estimator performance and should be considered alongside other metrics like bias and efficiency. The bias yielded by
the TMLE-binomial estimator is generally similar to, or smaller than, the bias of TMLE-multinomial. This suggests that
the lower coverage observed for TMLE-binomial may be due to bias in the standard error estimates, possibly stemming
from errors in the estimated probabilities of treatment used in the influence curve. While it is beyond the scope of this
study to correct these standard errors, this is an important avenue for future research, especially since TMLE-binomial
was more precise in some cases.

While our simulation results generally show that the TMLE-multinomial estimator achieves closer to nominal cov-
erage, it is important to consider this finding in the context of other performance metrics such as bias and efficiency.
Achieving nominal coverage with an estimator that exhibits greater bias and less efficiency may not be universally prefer-
able. For example, the wider confidence intervals observed for TMLE-multinomial could be indicative of overestimation
of standard errors. This overestimation could, in turn, result in higher coverage rates that may not necessarily reflect
superior estimator performance. The estimator’s wider confidence intervals may be advantageous in some scenarios but
could also indicate a trade-off between bias and variance. Future work should aim to refine the standard error estimation
process for TMLE-multinomial to achieve a more balanced performance across different simulation settings.

In our simulations, we found that the TMLE-binomial estimator often exhibited similar or even smaller bias com-
pared to the TMLE-multinomial estimator, suggesting that its lower coverage rates may stem from biases in the estimated
standard errors rather than the point estimates. This was particularly evident in four of the nine scenarios considered,
including all three settings with inadequate overlap. Therefore, for analysts primarily concerned with bias, especially in
the presence of significant imbalances in the covariate distribution across treatment levels, the binomial approach may
be more appealing despite its lower coverage rates.

5.2 Application: Implications, limitations, and future directions

The paper presents, to the best of our knowledge, the first doubly-robust estimates of the relative safety of specific antipsy-
chotic drugs for individuals with SMI. We find a reduction in cardiometabolic risk of a relatively infrequently used FGA
(drug A), which has been shown to have a generally low cardiometabolic risk among antipsychotic drugs, relative to a
more popular drug, a SGA (reference drug), thought to have a more favorable safety profile relative to other SGAs. The
estimated percentage point reduction of initiating Drug A rather than the reference drug on 36-month diabetes incidence
or death is 1.0 [0.2, 1.8]. This estimate is driven by a reduction in diabetes risk rather than mortality, and is targeted
to a clinically meaningful population—one for which an antipsychotic drug will be prescribed. Below, we outline key
limitations of our study and suggest directions for future research.

First, our study, like any observational research, is susceptible to unmeasured confounding and treatment adherence
variations. For example, prescribers’ subjective drug risk assessments and unobserved patient factors could introduce
bias. Prior studies share these limitations and often rely on regression-based methods, making them more vulnerable to
confounding and model misspecification. Additionally, in an intent-to-treat study, variations in adherence between oral
and injectable forms of the drug are part of the treatment effect and could introduce meaningful biases in the estimated
treatment effects.

Second, the target population in our study comprises patients within the same public health insurance system across
different states. Our results are therefore conditional on this combined cohort and may not be generalizable to individual
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state populations. We acknowledge the methodological challenges associated with pooling data from different states into
a single analysis. While all patients in our study have the same public insurer and access to the same set of treatments,
we recognize that this does not fully account for potential state-specific variations in healthcare practices, patient demo-
graphics, or other unobserved confounders. To mitigate this, we included patients’ state as a covariate in our models. We
understand that this approach may not fully capture the complexity introduced by combining data from different states.
Future work could explore more robust methods for accounting for state-level heterogeneity, such as a meta-analysis
approach or multi-level modeling.

Third, a limitation of our study is the high rate of censoring, about 27%. While we have employed Kaplan-Meier
survival curves and Cox proportional hazards models to better understand the censoring mechanism and its potential
impact on our results, the potential for bias due to censoring remains. The test for the assumption of proportional hazards
indicated that this assumption was violated, suggesting that the hazard ratios are not constant over time and that censoring
could introduce bias into our estimates. Future studies could explore more advanced methods for handling censoring,
such as inverse probability of treatment and censoring weighting,78 to provide more robust estimates.
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APPENDIX A. DESCRIPTIVE SUMMARIES FOR APPLICATION

T A B L E A1 Summary statistics of binary baseline covariates, by assigned antipsychotic drug (n = 38 762).

Reference A B C D E All

Variable n % n % n % n % n % n % n %

Sex

Female 3889 58.2 784 33.7 2160 34.3 5756 55.8 3954 40.0 1917 59.1 18 460 47.6

Payer

Dual 5035 75.3 1629 70.0 4893 77.7 7365 71.4 7399 74.8 2285 70.5 28 606 73.8

Medicare 1651 24.7 699 30.0 1408 22.4 2944 28.6 2498 25.2 956 29.5 10 156 26.2

Index year

2008 3110 46.5 1179 50.6 3634 57.7 4937 47.9 5232 52.9 1628 50.2 19 720 50.9

2009 2038 30.5 646 27.8 1501 23.8 2939 28.5 2528 25.5 895 27.6 10 547 27.2

2010⋆ 1538 23.0 503 21.6 1166 18.5 2433 23.6 2137 21.6 718 22.1 8495 21.9

State

California 3765 56.3 1180 50.7 3904 62.0 5470 53.1 5314 53.7 1563 48.2 21 196 54.7

Georgia 635 9.5 423 18.2 800 12.7 1544 15.0 1695 17.1 521 16.1 5618 14.5

Iowa 723 10.8 211 9.1 377 6.0 762 7.4 764 7.7 275 8.5 3112 8.0

Mississippi 435 6.5 283 12.2 406 6.4 674 6.5 743 7.5 283 8.7 2824 7.3

Oklahoma 704 10.5 143 6.1 437 6.9 1026 9.9 820 8.3 305 9.4 3435 8.9

South Dakota 126 1.9 16 0.7 85 1.4 161 1.6 144 1.4 44 1.4 576 1.5

West Virginia 298 4.5 72 3.1 292 4.6 672 6.5 417 4.2 250 7.7 2001 5.2

Race/ethnicity

Black 803 12.0 768 33.0 1062 16.9 1370 13.3 2132 21.5 514 15.9 6649 17.1

Latino 749 11.2 268 11.5 695 11.0 1048 10.2 1102 11.1 325 10.0 4187 10.8

Other/missing 448 6.7 146 6.3 514 8.2 563 5.5 728 7.4 178 5.5 2577 6.7

White 4686 70.1 1146 49.2 4030 64.0 7328 71.1 5935 60.0 2224 68.6 25 349 65.4

Primary diagnosis

Bipolar I 2042 30.5 178 7.7 1167 18.5 3642 35.3 1639 16.6 1053 32.5 9721 25.1

MDD 1782 26.6 124 5.3 738 11.7 3064 29.7 1459 14.7 573 17.7 7740 20.0

Schiz. 2862 42.8 2026 87.0 4396 69.8 3603 35.0 6799 68.7 1615 49.8 21 301 55.0

Health status

Psychiatric comorbidity 1250 18.7 271 11.6 886 14.1 2255 21.9 1525 15.4 587 18.1 6774 17.5

Metabolic risk 178 2.7 27 1.2 77 1.2 195 1.9 166 1.7 75 2.3 718 1.9

Other chronic conditions 1548 23.1 324 13.9 1168 18.5 2712 26.3 1934 19.5 775 23.9 8461 21.8

Metabolic testing

Lipid or glucose lab tests 1246 18.6 300 12.9 989 15.7 2247 21.8 1681 17.0 634 19.6 7097 18.3

Drug use

Antidiabetic 364 5.4 134 5.8 185 2.9 527 5.1 543 5.5 200 6.2 1953 5.0

Cardiometabolic disorders 1798 26.9 516 22.2 1435 22.8 2866 27.8 2295 23.2 904 27.9 9814 25.3

Cardiometabolic effects 4775 71.4 1073 46.1 3611 57.3 7508 72.8 5812 58.7 2338 72.1 25 117 64.8

Note: 2010⋆ indicates summary statistics for the index years of 2010 and 2011.
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T A B L E A2 Summary statistics of selected continuous baseline covariates (n = 38 762).

Variable Drug nj Min. Mean Max. SD

Age Reference 6686 19.9 43.7 64.0 10.2

A 2328 20.8 45.4 63.7 10.0

B 6301 20.2 44.9 64.2 10.1

C 10 309 20.1 45.0 64.1 9.9

D 9897 20.0 44.2 64.5 10.4

E 3241 20.0 43.6 64.1 10.1

All 38 762 19.9 44.5 64.5 10.2

Antipsychotic drug use Reference 6686 0.0 96.0 183.0 71.2

(days) A 2328 0.0 105.4 183.0 68.0

B 6301 0.0 124.6 183.0 65.2

C 10 309 0.0 102.2 183.0 70.8

D 9897 0.0 114.7 183.0 68.7

E 3241 0.0 115.7 183.0 68.2

All 38 762 0.0 109.3 183.0 69.7

Psychiatric ER visits Reference 6686 0.0 0.1 9.0 0.5

A 2328 0.0 0.2 10.0 0.6

B 6301 0.0 0.1 16.0 0.6

C 10 309 0.0 0.2 13.0 0.6

D 9897 0.0 0.1 33.0 0.7

E 3241 0.0 0.1 8.0 0.5

All 38 762 0.0 0.1 33.0 0.6

Psychiatric outpatient Reference 6686 0.0 6.4 172.0 12.2

visits A 2328 0.0 6.7 183.0 15.5

B 6301 0.0 6.1 183.0 13.8

C 10 309 0.0 5.3 183.0 10.0

D 9897 0.0 7.1 183.0 16.5

E 3241 0.0 6.2 180.0 12.5

All 38 762 0.0 6.3 183.0 13.4

Psychiatric inpatient Reference 6686 0.0 1.4 183.0 7.8

days A 2328 0.0 2.7 106.0 9.6

B 6301 0.0 2.0 183.0 8.9

C 10 309 0.0 1.9 183.0 7.8

D 9897 0.0 2.3 183.0 9.4

E 3241 0.0 1.7 165.0 8.1

All 38 762 0.0 2.0 183.0 8.6

Note: Non-psychiatric or injury-related ER visits, outpatient visits, and inpatient days not shown due to space constraints.
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