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Abstract
The paper approaches the task of handwritten text recognition (HTR) with attentional encoder–decoder networks trained on

sequences of characters, rather than words. We experiment on lines of text from popular handwriting datasets and compare

different activation functions for the attention mechanism used for aligning image pixels and target characters. We find that

softmax attention focuses heavily on individual characters, while sigmoid attention focuses on multiple characters at each

step of the decoding. When the sequence alignment is one-to-one, softmax attention is able to learn a more precise

alignment at each step of the decoding, whereas the alignment generated by sigmoid attention is much less precise. When a

linear function is used to obtain attention weights, the model predicts a character by looking at the entire sequence of

characters and performs poorly because it lacks a precise alignment between the source and target. Future research may

explore HTR in natural scene images, since the model is capable of transcribing handwritten text without the need for

producing segmentations or bounding boxes of text in images.
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1 Introduction

Handwritten text recognition (HTR) on character sequen-

ces is an open research problem because it is harder to

segment and recognize individual characters, rather words

[1]. Moreover, transcription models must solve the problem

of finding and classifying characters at each time-step

without knowing the alignment between the input sequence

of image pixels and the target sequence of characters [2].

Previous approaches to HTR include using a hidden

Markov model (HMM), or HMM-neural network hybrid, to

match image features to character labels. The HMM

approach is outperformed by models that combine a single

recurrent neural network (RNN) with a connectionist

temporal classification (CTC) output layer [3–8]. The

CTC-based models calculate a probability distribution over

all possible target sequences, conditional on the input

sequence. The CTC-based models assume strict mono-

tonicity in input-target sequence alignments, and generally

assume a target sequence length that is bounded by the

input sequence length.

In this work, we employ the encoder–decoder networks

proposed by Deng et al. [9], which extends the encoder–

decoder RNNs of Vinyals et al. [10] and Bahdanau et al.

[11] for the problem of decompiling images into presen-

tational markup. The encoder–decoder model encodes a

variable-length sequence of characters into a fixed-length

vector and then decodes the vector into a variable-length

target label. Encoder–decoder RNNs are suitable for han-

dling long sequences of data and have become standard for

neural machine translation, speech recognition [12], and

image captioning [13] tasks.

The model of Deng et al. consists of a convolutional

neural network (CNN) that extracts visual features from the

images and arrange the features on a grid. An RNN encoder

re-encodes each row of the grid, learning additional fea-

tures such as text directionality. Lastly, an RNN decoder

outputs a character sequence one step at a time, using an
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attention mechanism to emphasize the most important

columns of re-encoded features at each decoding step. The

use of attention mechanism in the decoder relaxes the

monotonicity assumption of the CTC-based model, and

improves the ability of the encoder–decoder networks to

learn the correct alignment between image pixels and target

characters, and to extract the most relevant information for

each part of the output sequence [14]. Attention-based

networks are capable of modeling the language structures

within the output sequence, rather than simply mapping the

input to the correct output [15].

Encoder–decoder RNNs have been previously employed

for recognizing text in natural images [16, 17], and more

recently for HTR. Several recent papers propose a hybrid

architecture consisting of a CNN to encode the input image

and an RNN decoder to predict sequences of characters

[18–26]. For example, Sueiras et al. [27] and Kang et al.

[28] use attentional encoder–decoder networks very similar

to ours, but train their model to transcribe words, rather

than sequences of characters, and employ a word-based

lexicon (i.e., a list of words found in the training set) for

decoding.

The main differentiator in our approach is that we

employ a CNN to extract image features and a separate

RNN encoder to re-encode the features so that the encoder

can learn new features such as text directionality. Another

difference is that we use an unidirectional RNN decoder to

predict the sequence of characters. Gui et al. [29] train

character-aware attention networks, but the architecture

differs in that they use an attention-based bidirectional

RNN decoder and CTC output layer to convert predictions

made by the decoder into a character sequence.

There are recent developments towards architecture

based entirely on CNNs or attention mechanisms, bypass-

ing any recurrence. Fully convolutional architectures have

performed well against encoder–decoder networks on

neural machine translation tasks [30], handwriting gener-

ation [31, 32], and HTR tasks [33–38]. The entirely

attention-based transformer model initially proposed by

Vaswani et al. [39] have outperformed encoder–decoder

networks on several HTR tasks [40].

In this work, we focus on developing character-aware

models for HTR. Character-aware models view the input

and output text lines as a sequence of characters rather than

words, and each character prediction is explicitly condi-

tioned on the previous character. These models are capable

of making inferences about unseen source words and also

generating unseen target words. In addition, character-

aware models do not require lexicons because only char-

acters are explicitly modeled [41].

Our primary contributions are applying character-aware

attention networks to the task of transcribing lines of

unconstrained (i.e., cursive or overlapping) handwritten

text and comparing different activation functions for the

attention mechanism. Section 2 describes attention net-

works in the context of character-based HTR. Section 3

describes the benchmark datasets used for the experiments

and provides details on the network architecture and

training. Section 4 describes the results on benchmark

datasets, comparing the performance of different attention

mechanisms. Section 5 concludes and suggests directions

for future research.

2 Attention networks for character-based
HTR

The character-based HTR problem is one of converting

images to hand-transcribed sequences of discrete charac-

ters. Following the notation of Deng et al., the input x 2 X
is an image with height and width dimensions RH�W . The

target y 2 Y consists of a sequence of characters,

y1; y2; . . .; yT , where T is the sequence length and each

character exists within a known vocabulary, R. The

supervised task is to learn a function that maps X ! Y
using training example pairs (x, y).

The general architecture of the attention networks of

Deng et al., which we extend for HTR, is illustrated in

Fig. 1. The CNN inputs x and arranges the visual features

on a grid, V with dimensions H0 �W 0 � C, where C is the

number of channels, and H0 and W 0 are reduced dimensions

following max pooling operations.

The RNN encoder slides across each row of V, and at

each time-step t, recursively updates a hidden state ht using

vt 2 V as input:

ht ¼ f ðvt; ht�1; hÞ; ð1Þ

where f ð�Þ is a nonlinear activation and h is a learned

parameter. The encoder outputs a re-encoded feature grid
~Vh;w ¼ RNNð ~Vh;w�1;Vh;wÞ, for rows h 2 f1; . . .;H0g and

columns w 2 f1; . . .;W 0g. Encoding row-wise is useful for

transcription tasks because the encoder can learn sequential

order information, such as text directionality. The networks

capture column-wise sequential information by learning a

positional encoding in the form of an initial hidden state,
~Vh;0, which is added to each row of ~V.

The decoder RNN learns a conditional language model

to give the probability of the next character given the

history and re-encoded feature grid:

pðytþ1jy1; . . .; yt; ~VÞ ¼ softmax W1otð Þ; ð2Þ

where ot ¼ f ðW2½h0t; ct�Þ: ð3Þ

In the above equations, the matrices W1 and W2 are

learned parameters of the model, and the softmax
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activation function assigns probabilities over R. The hidden

state of the RNN decoder, h0t, is updated recursively by

h0t ¼ f h0t�1; yt�1; h
0ð Þ; ð4Þ

where h0 is a learned parameter. The context vector, ct,

provides the most important elements of the re-encoded

feature grid at each t:

ct ¼
X

h;w

at ~Vh;w; ð5Þ

where at ¼ softmaxðaðh0t; ~Vh;wÞÞ; ð6Þ

and at;h;w ¼ b>f ðW3h
0
t þW4

~Vh;wÞ; ð7Þ

where the vector b and matrices W3 and W4 are learned

parameters, and the attention mechanism að�Þ approximates

the vector at of unnormalized attention weights.

The attention weights are distributed over columns of ~Vt

so that each feature in the column is given identical weight,

which is standard for typical character recognition tasks.

This approach differs from the attention mechanism used

by Deng et al., which places attention over rows and col-

umns, so that attention weights vary for each element of ~Vt,

which may be more appropriate for complex images such

as math formulas or tables. While the standard attention of

Bahdanau et al. uses the softmax activation for Eq. (6), we

experiment with two alternative activations to produce

attention weights: sigmoid (i.e., Bernoulli) and linear (i.e.,

at ¼ et).

Finally, the networks are trained end-to-end to minimize

the cross-entropy loss:

L ¼
XT

t¼1

� log p ytþ1 j y1; . . .; yt; ~V
� �

: ð8Þ

3 Experimental evaluation

We experiment on two widely-used HTR benchmark

datasets, IAM (modern English) and RIMES (modern

French), and two historical datasets, Saint Gall (9th c.

Latin) and Parzival (13th c. German) [42–45]. The datasets,

which are described in Table 1, consist of images of

handwritten text lines and their corresponding ground-truth

transcriptions.

We follow the image preprocessing steps of Puigcerver

et al. [19, 46], which includes binarizing the images in a

manner that preserves their original grayscale information

[47], rescaling the images, and converting the images to

JPEG format. Figure 2 provides an example of a prepro-

cessed image from each benchmark dataset.

3.1 Evaluation

We measure the performance of the attention networks by

comparing the estimated transcription ŷ with the ground-

truth y. Since the networks are trained on sequences of

characters rather than words, we measure the Character

Error Rate (CER) instead of the Word Error Rate. The CER

is calculated as the edit distance normalized by the number

of characters in the ground truth:

Fig. 1 Attention networks architecture. Notes: ‘Conv’: convolution layer, ‘Pool’ max-pooling layer, ‘Bn’: batch normalization
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CER ¼
X

t

Edit Distanceðyt; ŷtÞ
jytj

; ð9Þ

where the edit distance (or, Levenshtein distance), is the

minimum number of insertions, substitutions, and deletions

required to alter the target yt to the prediction ŷt at each

time-step. We also measure the character perplexity

(CPPL) of the character-based conditional language model,

which is the exponent of the cross-entropy loss defined in

Eq. (8). Language models with smaller perplexity generally

perform better in predicting characters given the history,

and are thus strongly correlated with the CER [48, 49].

3.2 Implementation details

When training the networks, we fix the image height to 64

pixels while maintaining the aspect ratio, group images

with similar widths, and pad with whitespace to facilitate

batching. We implement a biased importance sampling

scheme to speed up training and decoding [50].

The CNN converts the text line images into a sequence

of visual feature vectors. It consists of seven convolutional

layers, each followed by a Rectified Linear Unit (ReLU)

activation and then a max-pooling layer to reduce the

spatial size of the representation. The third, fifth, and

seventh layers use batch normalization following the

convolution in order to speed up training. Dropout is

applied to the output of the seventh convolutional layer in

order to prevent overfitting. Table 2 provides further detail

on the CNN specifications.

Stacked on the CNN is a single-layer, bidirectional long

short-term memory (BLSTM) encoder with 512 hidden

units and a two-layer gated recurrent unit (GRU) decoder,

each with 256 hidden units. The bidirectional recurrent

layers allow the encoder to compute a representation that

depends on both past and present characters in the

sequence, and row-wise encoding refines the feature rep-

resentation to include horizontal context. The attentional

decoder interprets the feature representation, focusing on

the most important columns of re-encoded features.

We train the networks for 200 epochs with a batch size

of 8, stochastic gradient descent to learn the parameter

weights, and the Adam optimizer to adapt the learning rate.

As a regularization strategy, we implement ‘2 regulariza-

tion loss and data augmentation by applying random affine

transformations to 20% of the training set images, includ-

ing scaling, translating, rotating, and shearing. In addition,

we employ gradient norm clipping and gradient normal-

ization in order to prevent exploding gradients.

Table 1 Training, validation,

and test set splits and language

characteristics for benchmark

datasets

Lines Maximum length Unique Characters

Dataset Train Val. Test Total Train Val. Test Train Val. Test

IAM 6161 966 2915 10,042 81 73 95 79 76 75

Parzival 2237 912 1328 4477 70 71 66 57 56 55

RIMES 10,171 1162 778 12,111 100 110 94 97 88 85

Saint Gall 468 235 707 1410 74 69 73 47 46 47

Notes: unique characters include case-sensitive alphanumeric characters, punctuation, and whitespace

Fig. 2 Example preprocessed

images from the benchmark

datasets
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4 Results

We train the attention networks without the assistance of

any lexicon or explicit language model and record their

performance in terms of CER and CPPL on the validation

and test in Table 3. The networks perform comparatively

well on the Parzival and Saint Gall datasets, which have

fewer training examples, and have shorter lines and

vocabularies. The networks perform less well on the IAM

and RIMES datasets, which have longer lines, and a larger

vocabulary and number of training examples.

Table 4 compares the performance of the (softmax)

attention networks on the IAM and RIMES test set with

models in the existing literature. The attention networks

achieve a CER of 16.6% on the IAM dataset, which out-

performs CTC models that encode image features using

LSTMs or multidimensional LSTMs (MDLSTMs) [51],

but does not approach the current state-of-the-art model of

Bluche and Messina [18], which combines convolutional

and recurrent layers for encoding with a CTC decoder.

A direct comparison against most of the models in the

existing literature is not possible because most of the

existing models rely on domain-specific lexicons, and

explicit language models for decoding. Bluche [49], for

example, uses a word-based lexicon and a word-based

language model. The model of Bluche [1], which combines

a MDLSTM encoder and a softmax attention-enhanced

bidirectional LSTM decoder, inputs and outputs at the

character-level, although the decoder output is not condi-

tioned on the previous character. The aforementioned

model is also trained with curriculum learning and with a

slightly larger training set. The state-of-the-art model of

Bluche and Messina [18], in comparison, uses a hybrid

word and character-based language model. Gui et al. [29]

also train character-aware attention networks, but with a

CTC output layer to perform the transcription. Michael

et al. [52] is the most comparable to our work because the

authors train character-aware attention networks without

the use of a language model.

4.1 Comparing attention distributions

In order to gain insight into how the attention mechanism

learns alignment between the source and target character,

we plot in Fig. 3 a visualization of the source attention

distribution for attention networks trained on the IAM

dataset. Each row traces the attention weights over the

source line at each step of decoding. White values reflect

intensity of attention while absence of attention is black.

Softmax attention predicts a character by focusing

heavily on single characters, whereas the attention distri-

bution for sigmoid focus on multiple characters at each

time-step. Softmax attention is able to learn a linear

alignment whereas the alignment generated by sigmoid

attention is linear and less precise.1 When a linear function

is used to obtain the attention weights, the model predicts a

character by looking at the entire sequence of characters,

and there is no clear structure in the alignment.

In order to determine how the model makes mistakes,

we visualize attention on the input image drawn from the

IAM dataset. For example, the model tends to produce

errors when characters are skewed (Fig. 4b), have long tails

(Fig. 4a, c), or written in uppercase cursive (Fig. 4d).

Figure 5, which provides examples of correct IAM tran-

scriptions and visualized softmax attention, shows that the

model can correctly predict illegible handwriting (Fig. 5b)

because it leverages information from the entire input

sequence.

5 Conclusion and future directions

The paper approaches the task of handwritten text tran-

scription with attention-based encoder–decoder networks

trained to handle sequences of characters rather than words.

The attention networks are domain and language-agnostic

because they are trained without the aid of a lexicon or

explicit language model.

We train the model on lines of text from a popular

handwriting dataset and experiment with different activa-

tion functions for the attention mechanism. Our results

show that softmax attention focuses heavily on individual

characters, while sigmoid attention focuses on multiple

characters at each step of the decoding. When the sequence

alignment is one-to-one, softmax attention is able to learn a

more precise alignment at each step of the decoding,

whereas the alignment generated by sigmoid attention is

Table 2 CNN specification

Conv Pool

# filters Filter size Stride size Bn Pool size Stride size

64 (3,3) (1,1) (2,2) (2,2)

128 (3,3) (1,1) (2,2) (2,2)

256 (3,3) (1,1) U – –

256 (3,3) (1,1) (2,1) (2,1)

512 (3,3) (1,1) U – –

512 (3,3) (1,1) (2,1) (2,1)

512 (2,2) (1,1) U – –

Notes: the sizes are ordered (height, width). See notes to Fig. 1

1 Similarly, Kim et al. [71] find that softmax attention performs better

than sigmoid attention on word-to-word machine translation tasks.
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much less precise. When the model has linear attention, the

model predicts a character by looking at the entire

sequence of characters and performs poorly because it

lacks a precise alignment between the source and text

output.

Our primary contributions are applying character-aware

attention networks to the task of handwritten text line

transcription and also comparing attention configurations

for the decoder. Future work might apply attention net-

works to the problem of HTR in natural scene images [72].

Previous literature has focused on recognizing printed text

in natural scene images using standard methods in

Table 3 Attention networks: evaluation metrics on benchmark

datasets

Dataset Val. Test

CER (%) CPPL CER (%) CPPL

IAM 14.3 71,075.2 16.6 exp(36.5)

Parzival 4.6 12.0 4.7 52.6

RIMES 11.1 811.9 12.1 92.4

Saint Gall 14.3 24.5 12.7 17,164.4

Notes: networks trained with softmax attention

Table 4 Benchmark

comparison: test set CER on

IAM and RIMES datasets

Model Source LM CB IAM CER (%) RIMES CER (%)

CNN ? BLSTM ? CTC [18] U 3.2 1.9

MDLSTM ? CTC [53] U 3.5 2.8

MDLSTM ? MLP/HMM [54] U 3.6 –

MDLSTM ? CTC [49] U 4.4 3.5

CNN ? LSTM ? CTC [19] U 4.4 2.3

MDLSTM ? Attention [55] U 4.4 3.5

Transformer [40] 4.6 -

LSTM ? HMM [56] U 4.7 4.3

LSTM ? HMM [57] U 4.8 4.3

CNN ? LSTM ? Attention [52] U U 4.8 –

CNN ? CTC [37] U 4.9 -

CNN ? LSTM ? Attention [58] U 4.9 –

LSTM ? HMM [59] U 5.1 4.6

MDLSTM ? CTC [60] U 5.1 3.3

CNN ? BLSTM ? Attention ? CTC [29] 5.1 –

CNN ? BLSTM [61] 5.7 5.0

CNN ? BGRU ? GRU ? Attention [22] U 5.7 2.6

CNN ? CTC [62] 6.1 3.4

MDLSTM ? CTC [1] U 6.6 –

CNN ? BGRU ? GRU [28] 6.8 –

CNN ? BLSTM ? LSTM [20] 8.1 3.5

GMM/HMM [63] U 8.2 –

CNN ? LSTM ? Attention [27] 8.8 –

CNN ? LSTM ? CTC [64] 9.7 –

MLP/HMM [65] U 9.8 –

MDLSTM ? CTC [66] U 11.1 8.29

MLP/HMM [67] U 12.4 –

CNN ? BLSTM ? GRU ? Attention Ours U 16.6 12.1

MDLSTM ? CTC [2] 17.0 –

BLSTM ? CTC [6] U 18.2 -

CNN ? LSTM ? Attention [58] U – 3.1

CNN ? BLSTM ? Attention [68] U – 5.8

HMM/MLP [69] U – 7.2

BLSTM ? CTC [70] – 7.6

Notes: ‘BGRU’: bi-directional GRU; ‘CB’: model is character-based; ‘GMM’: Gaussian mixture model;

‘LM’: explicit language model used for decoding; ‘MLP’: multilayer perceptron
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computer vision for segmentation [73]. The attention net-

works used in this paper are capable of transcribing

handwritten text without the need for producing

segmentations or bounding boxes of text in images, so the

model can potentially transcribe handwritten text in natural

scene images without preprocessing.

Fig. 3 Visualization of the

source attention distribution

over the input image (horizontal

axis). The vertical axis is the

transcription. Each row traces

the attention weights over the

source line at each step of

decoding, in grayscale (0: black,

1: white)
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Fig. 4 Incorrect IAM transcriptions and visualized softmax attention. White lines indicates the attended regions and underlines in the

transcription indicate the corresponding character

Fig. 5 Correct IAM transcriptions and visualized softmax attention. See footnotes to Fig. 4
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